ECE447: Robotics Engineering

Lecture 2: Introduction to Robot Manipulator

Dr. Haitham El-Hussieny

Electronics and Communications Engineering
Faculty of Engineering (Shoubra)
Benha University

Spring 2019

Non-Industrial Applications of Robot Manipulators:

Rehabilitation

Service (Cooking)

Service (Folding Clothes)

Table of Contents

(1) Structure of Robot Manipulators.
(2) Degree of Freedom (DoF).
(3) Task Space and Workspace.
(4) Common Kinematic Arrangements.

Table of Contents

(1) Structure of Robot Manipulators.
(2) Degree of Freedom (DoF).
(3) Task Space and Workspace.

4 Common Kinematic Arrangements.

Structure of Robot Manipulators:

The robotic manipulators are composed of:

- Kinematic open chain composed of Rigid Links and Joints.

Each joint connects two links together.

Structure of Robot Manipulators:

The robotic manipulators are composed of:

- Kinematic open chain composed of Rigid Links and Joints.
- The BASE: can be either fixed in the work environment or placed on a mobile platform.

Each joint connects two links together.

Structure of Robot Manipulators:

The robotic manipulators are composed of:

- Kinematic open chain composed of Rigid Links and Joints.
- The BASE: can be either fixed in the work environment or placed on a mobile platform.
- End-Effector: Tool is located at the end, used to execute the desired operations [gripper or specific tool].

Each joint connects two links together.

Structure of Robot Manipulators:

Types of Joints:
Linear (Prismatic) Joint

- Allows translation between two links.
- It is represented by symbol P.
- The joint variable is displacement d.

Structure of Robot Manipulators:

Types of Joints:

Linear (Prismatic) Joint

- Allows translation between two links.
- It is represented by symbol P.
- The joint variable is displacement d.

Rotary (Revolute) Joint

- Allows rotation between two links.
- It is represented by symbol R.
- The joint variable is angle θ.

Structure of Robot Manipulators:

Types of Joints:

Spherical Joint

- Allows rotation around three axes.
- It is represented by symbol S.
- The joint variables are θ, γ and ψ.

Structure of Robot Manipulators:

Types of Joints:

Spherical Joint

- Allows rotation around three axes.
- It is represented by symbol S.
- The joint variables are θ, γ and ψ.

Universal Joint

- Allows rotation around two axes.
- It is represented by symbol U.
- The joint variables are θ_{1} and θ_{2}.

Structure of Robot Manipulators:

Types of Joints:

Cylindrical Joint

- Allows rotation and translation.
- It is represented by symbol C.

Structure of Robot Manipulators:

Types of Joints:

- Allows rotation and translation.
- It is represented by symbol C.

Screw Joint

- Allows rotation and a constrained translation.
- It is represented by symbol $S C$.

Structure of Robot Manipulators:

Types of Joints:
The two common joints in serial robot manipulators are (Prismatic and Revolute) joints.

Structure of Robotic Manipulators:

Example of Robotic Manipulators:

Structure of Robotic Manipulators:

Example of Robotic Manipulators:

Structure of Robotic Manipulators:
Example of Robotic Manipulators:

Structure of Robotic Manipulators:

Example of Robotic Manipulators:

Table of Contents

(1) Structure of Robot Manipulators.
(2) Degree of Freedom (DoF).
(3) Task Space and Workspace.

4 Common Kinematic Arrangements.

Degree of Freedom (DoF):

Configuration Space:

- Robot's configuration: a specification of the positions of all points of the robot.

Degree of Freedom (DoF):

Configuration Space:
■ Robot's configuration: a specification of the positions of all points of the robot.

■ Since the robot is rigid, only a few numbers are needed to represent its configuration.

Degree of Freedom (DoF):

Configuration Space:

- Robot's configuration: a specification of the positions of all points of the robot.
■ Since the robot is rigid, only a few numbers are needed to represent its configuration.
- The n-dimensional space containing all possible configurations of a robot is called the configuration space (C-space).

Examples of configuration spaces

Degree of Freedom (DoF):

Robot's Degrees of Freedom (n):

Is the smallest number n of real-valued coordinates needed to represent the robot's configuration.

Degree of Freedom (DoF):

Robot's Degrees of Freedom (n):

Is the smallest number n of real-valued coordinates
 needed to represent the robot's configuration.

Rigid Body DoF (m):

- A rigid body in three-dimensional space, which we call a spatial rigid body, has six degrees of freedom, $m=6$ (three for position and three for

Degree of Freedom (DoF):

Robot's Degrees of Freedom (n):

Is the smallest number n of real-valued coordinates
 needed to represent the robot's configuration.

Rigid Body DoF (m):

- A rigid body in three-dimensional space, which we call a spatial rigid body, has six degrees of freedom, $m=6$ (three for position and three for orientation).
- A rigid body moving in a two-dimensional plane, which we call a planar rigid body, has three degrees of freedom, $m=3$ (two for position and one for orientation).

Degree of Freedom (DoF):

Defective manipulators:
If $n<m$, e.g. $n=4,5$ and $m=6$ (spatial). It is not possible to execute all the possible tasks in the workspace, but only those defined in a proper subspace (e.g. SCARA).

Degree of Freedom (DoF):

Defective manipulators:
If $n<m$, e.g. $n=4,5$ and $m=6$ (spatial). It is not possible to execute all the possible tasks in the workspace, but only those defined in a proper subspace (e.g. SCARA).

SCARA Robot

Redundant Robots

Degree of Freedom (DoF):

Grübler's Formula:

■ The number of degrees of freedom of a mechanism with links and joints can be calculated using Grübler's formula:

DoF $=$ (sum of freedoms of the bodies) $-($ number of independent constraints)
■ If a mechanism has N links including ground, and J joints, its DoF is determined by:

$$
\text { DoF }=m(N-1-J)+\sum_{i=1}^{J} f_{i}
$$

■ $m=3$ for planar and $m=6$ for rigid mechanisms.

- f_{i} is the number of freedoms provided by joint i.

Degree of Freedom (DoF):

Grübler's Formula (Examples)
 DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

$$
\begin{gathered}
m=3 \\
N=5 \text { links } \\
J=4 \text { joints } \\
\mathrm{DoF}=3(5-1-4)+4 \\
\mathrm{DoF}=4
\end{gathered}
$$

Redundant robot

Degree of Freedom (DoF):
 Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

$$
m=3
$$

$$
N=5 \text { links }
$$

$$
N=5 \text { links }
$$

$$
J=5 \text { joints }
$$

$$
J=4 \text { joints } \quad \text { DoF }=3(5-1-5)+5
$$

$$
\text { DoF }=3(5-1-4)+4 \quad \text { DoF }=2
$$

$$
\text { DoF }=4
$$

Redundant robot

Degree of Freedom (DoF):
 Grübler's Formula (Examples) DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

Degree of Freedom (DoF):

Grübler's Formula (Examples) DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

- Three links are connected at a single point A.
- Since a joint connects exactly two links, the joint at A is correctly interpreted as two revolute joints overlapping each other.

Mechanism with two overlapping joints

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

- Three links are connected at a single point A.
- Since a joint connects exactly two links, the joint at A is correctly interpreted as two revolute joints overlapping each other.
$m=3$
$N=8$ links
$J=9$ joints
DoF $=3(8-1-9)+9$
DoF $=3$

Mechanism with two overlapping joints

Degree of Freedom (DoF):

Grübler's Formula (Examples) DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

■ The fixed link connected with the slider is considered as ground.
$m=3$
$N=4$ links
$J=4$ joints
DoF $=3(4-1-4)+4$
DoF $=1$

Slider-crank mechanism

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

$$
\begin{aligned}
& m=3 \\
& N=7 \text { links } \\
& J=9 \text { joints } \\
& \text { DoF }=3(7-1-9)+9(1) \\
& \text { DoF }=3
\end{aligned}
$$

Degree of Freedom (DoF):

Grübler's Formula (Examples) DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

Parallel Robots:

$m=6$
$N=17$ links
$J=21$ joints
DoF $=6(17-1-21)+9(1)+12(3)$
DoF $=15$
However, only three DoF are visible at the end effector that moves parallel to the fixed platform. So, the Delta robot acts as an $x-y-z$ Cartesian positioning device.

Delta robot

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$
$m=6$
$N=14$ links
$J=18$ joints $(6 \times P, 6 \times U, 6 \times S)$
DoF $=6(14-1-18)+6(1)+6(2)+6(3)$
DoF $=6$

- The Stewart-Gough platform is a popular choice for car and airplane cockpit simulators since it moves with the full six degrees of freedom of motion of a rigid body.
- Its parallel structure means that each leg needs to support only a fraction of the weight of the payload.

Stewart-Gough platform

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

$$
\begin{gathered}
m=3 \\
N=5 \text { links } \\
J=4 \text { joints } \\
\text { DoF }=3(5-1-4)+4 \\
\text { DoF }=4
\end{gathered}
$$

Degree of Freedom (DoF):

Grübler's Formula (Examples) \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

$$
\begin{gathered}
m=3 \\
N=5 \text { links } \\
J=4 \text { joints } \\
\text { DoF }=3(5-1-4)+4 \\
\text { DoF }=4
\end{gathered}
$$

$$
\begin{gathered}
m=6 \\
N=6 \text { links } \\
J=5 \text { joints } \\
\text { DoF }=6(6-1-5)+5 \\
\operatorname{DoF}=5
\end{gathered}
$$

Degree of Freedom (DoF):

Exception to Grübler's Formula \quad DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

■ Using Grüebler's equation, this linkage has zero degrees of freedom: DoF $=3(5-1-6)+6(1)=0$

A parallelogram linkage

$$
N=5, \quad J=6 R
$$

Degree of Freedom (DoF):

Exception to Grübler's Formula DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

■ Using Grüebler's equation, this linkage has zero degrees of freedom: DoF $=3(5-1-6)+6(1)=0$

- This indicates that the mechanism is locked (No motion). This is true if all pivoted links are not identical.

A parallelogram linkage

$$
N=5, \quad J=6 R
$$

Degree of Freedom (DoF):

Exception to Grübler's Formula DoF $=m(N-1-J)+\sum_{i=1}^{J} f_{i}$

■ Using Grüebler's equation, this linkage has zero degrees of freedom: DoF $=3(5-1-6)+6(1)=0$

- This indicates that the mechanism is locked (No motion). This is true if all pivoted links are not identical.
- If all pivoted links were the same size and the distance between the joints on the frame and coupler were identical, this mechanism is capable of motion, with a single degree of freedom.
- The center link is redundant and because it is identical in length to the other two links attached to the frame, it can be removed and, DoF $=3(4-1-4)+4(1)=1$

A parallelogram linkage $N=5, \quad J=6 R$

Table of Contents

(1) Structure of Robot Manipulators.
(2) Degree of Freedom (DoF).
(3) Task Space and Workspace.

4 Common Kinematic Arrangements.

Task Space and Workspace:

Task space

- The task space is a space in which the robot's task can be naturally expressed.
- The decision of how to define the task space is driven by the task, independently of the robot.

Drawing task space: \mathbb{R}^{2}

Peg-in-hole task space: \mathbb{R}^{5}

Task Space and Workspace:

Workspace

- Reachable workspace: is a specification of the configurations that the robot end-effector can reach.

Task Space and Workspace:

Workspace

- Reachable workspace: is a specification of the configurations that the robot end-effector can reach.
- Dexterous workspace: is a specification of the configurations that the robot end-effector can reach with arbitrary orientation.

Task Space and Workspace:

Workspace

- Reachable workspace: is a specification of the configurations that the robot end-effector can reach.
- Dexterous workspace: is a specification of the configurations that the robot end-effector can reach with arbitrary orientation.
■ Robot's workspace depends on: the kinematic configuration, the links' dimension, the joints' range of motion.

SCARA Manipulator

Cylindrical Manipulator

KUKA YouBot ?

Table of Contents

(1) Structure of Robot Manipulators.

(2) Degree of Freedom (DoF)
(3) Task Space and Workspace.
(4) Common Kinematic Arrangements.

Common Kinematic Arrangements:

[1] Articulated Manipulator (RRR):

ABB IRB1400 Anthropomorphic Robot

Common Kinematic Arrangements:

[2] Spherical Manipulator (RRP):

Stanford Arm

Common Kinematic Arrangements:

[3] SCARA Manipulator (RRP):
Selective Compliant Articulated Robot for Assembly:

Adept Cobra i600

Common Kinematic Arrangements:

[4] Cylindrical Manipulator (RPP):

Seiko RT3300 Robot

Common Kinematic Arrangements:

[5] Cartesian Manipulator (PPP):

Common Kinematic Arrangements:

[6] PUMA Manipulator (RRR):
Programmable Universal Machine for Assembly:

PUMA Robot

Common Kinematic Arrangements:

[7] Spherical Wrist (RRR):

- It is common to attach a spherical wrist to the manipulator end to allow the orientation of the end-effector.
- In spherical wrist the axes of the three joints are intersecting at the wrist center point.

"Robots are becoming more human, and humans are becoming more robotic"

Bob Metcalfe (1946-), Ethernet inventor.

Questions?

haitham.elhussieny@feng.bu.edu.eg

